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Abstract

The Generalized Empirical Interpolation Method (GEIM) is an extension first presented by Maday and Mula in [1] in
2013 of the classical empirical interpolation method (presented in 2004 by Barrault, Maday, Nguyen and Patera in [2])
where the evaluation at interpolating points is replaced by the more practical evaluation at interpolating continuous
linear functionals on a class of Banach spaces. As outlined in [1], this allows to relax the continuity constraint in the
target functions and expand both the application domain and the stability of the approach. In this paper, we present
a thorough analysis of the concept of stability condition of the generalized interpolant (the Lebesgue constant) by
relating it to an inf-sup problem in the case of Hilbert spaces. In the second part of the paper, it will be explained how
GEIM can be employed to monitor in real time physical experiments by providing an online accurate approximation of
the phenomenon that is computed by combining the acquisition of a minimal number, optimally placed, measurements
from the processes with their mathematical models (parameter-dependent PDEs). This idea is illustrated through a
parameter dependent Stokes problem in which it is shown that the pressure and velocity fields can efficiently be
reconstructed with a relatively low-dimensional interpolation space.

Keywords: empirical interpolation; generalized empirical interpolation; reduced basis; model order reduction;
stability; Stokes equations

Introduction

Let X be a Banach space of functions defined over a domain Q c R? (or CY). Let (X,)pen> X, C X, be a family
of finite dimensional spaces, dim X,, = n, and let (S ,),en be an associated family of sets of points: S, = {x}?_,, with

X! € Q. The problem of interpolating any function f € X has traditionally been stated as:

“Find £, € X, such that £,(x}) = f(x), Vi€ {1,....n)", (1)

where we note that it is implicitly required that X is a Banach space of continuous functions. The most usual ap-
proximation in this sense is the Lagrangian interpolation, where the interpolating spaces X,, are of polynomial nature
(spanned by plain polynomials, rational functions, Fourier series...) and the question on how to appropriately select
the interpolating points in this case has broadly been explored. Although there exists still nowadays open issues on
Lagrangian interpolation (see, e.g. [3]), it is also interesting to look for extensions of this procedure in which the in-
terpolating spaces X,, are not necessarily of polynomial nature. The search for new interpolating spaces X, is therefore
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linked with the question on how to optimally select the interpolating points in this case and how to obtain a process
that is at least stable and close to the best approximation in some sense.

Although several procedures have been explored in this direction (we refer to [4], [5] and also to the kriging studies
in the stochastic community such as [6]), of particular interest for the present work is the Empirical Interpolation
Method (EIM, [2], [7], [8]) that has been developed in the broad framework where the functions f to approximate
belong to a compact set F of continuous functions (X = C%(Q)). The structure of F is supposed to make any f € F
be approximable by finite expansions of small size. This is quantified by the Kolmogorov n—width d,,(F, X) of F in
X (see definition (2) below) whose smallness measures the extent to which F' can be approximated by some finite
dimensional space X, ¢ X of dimension n. Unfortunately, in general, the best approximation n-dimensional space
is not known and, in this context, the Empirical Interpolation Method aims to build a family of interpolating spaces
X, with satisfactory approximation properties together with sets of interpolating points S, such that the interpolation
is well posed. This is done by a greedy algorithm on both the interpolating points and the interpolating selected
functions ¢; (see [2]). This procedure has the main advantage of being constructive, i.e. the sequence of interpolating
spaces (X)) and interpolating points (S,) are hierarchically defined and the procedure can easily be implemented by
recursion.

A recent extension of this interpolation process consists in generalizing the evaluation at interpolating points by
application of a class of interpolating continuous linear functionals chosen in a given dictionary X ¢ £(X). This gives
rise to the so-called Generalized Empirical Interpolation Method (GEIM). In this new framework, the particular case
where the space X = [*(Q) was first studied in [1]. We also mention the preliminary works of [9] in which the authors
introduced the use of linear functionals in EIM in a finite dimensional framework. In the present paper, we will start
by revisiting the foundations of the theory in order to show that GEIM holds for Banach spaces X (Section 1). The
concept of stability condition (Lebesgue constant, A,) of the generalized interpolant will also be introduced.

In the particular case where X is a Hilbert space, we will provide an interpretation of the generalized interpolant of
a function as an oblique projection. This will shed some light in the understanding of GEIM from an approximation
theory perspective (Section 2.1). This point of view will be the key to show that the Lebesgue constant is related to
an inf-sup problem (Section 2.2) that can be easily computed (Section 3). The derived formula can be seen as an
extension of the classical formula for Lagrangian interpolation to Hilbert spaces. It will also be shown that the Greedy
algorithm aims to minimize the Lebesgue constant in a sense that will be made precise in Section 2.3. Furthermore,
the inf-sup formula that will be introduced will explicitly show that there exists an interaction between the dictionary
2 of linear functionals and the Lebesgue constant. Although it has so far not been possible to derive a general theory
about the impact of ¥ on the behavior of the Lebesgue constant, we present in Section 4 a first simple example in
which this influence is analyzed through numerical simulation.

The last part of the paper (Section 5) will allow to present some more elaborate potential applications of the
method with respect to what is presented in [1]. In particular, we will explain how GEIM can be used to build a tool
for the real-time monitoring of a physical or industrial process. This will be achieved thanks to the online computation
of a generalized interpolant that will approximate the phenomenon under consideration. Its derivation will combine
measurements collected on the fly from the process itself with a mathematical model (a parameter dependent PDE)
that represents the physical understanding of the process. It will also be explained how the proposed methodology
can be helpful for the minimization of the number of sensors required to reconstruct the field variable and also their
optimal selection and placement, which are very important issues in engineering. These ideas will be illustrated
through a parameter dependent Stokes problem for X = (H 1(Q))2 X L(Q), where L3(Q) is the space of the L*(Q)
functions with zero mean over Q.

Taking advantage of this idea, we will outline in the conclusion how the method could be used to build an adaptive
tool for the supervision of experiments that could distinguish between normal and accidental conditions. We believe
that this tool could help in taking real-time decisions regarding the security of processes.

1. The Generalized Empirical Interpolation Method

Let X be a Banach space of functions defined over a domain Q C R4, where d = 1,2, 3. Its norm is denoted by
l.llx. Let F be a compact set of X. With M being some given large number, we assume that the dimension of the
vectorial space spanned by F' (denoted as ¥ = span{F}) is of dimension larger than M. Our goal is to build a family
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of n-dimensional subspaces of X that approximate well enough any element of F. The rationale of this approach is
linked to the notion of n-width following Kolmogorov [10]:

Definition 1.1. Let F be a subset of some Banach space X and Y, be a generic n-dimensional subspace of X. The
deviation between F and Y, is .
E(F;Y,) = sup inf |lx - yllx .
xeF Yelu

The Kolmogorov n-width of F in X is given by

d,(F,X) := inf{E(F;Y,): Y, a n-dimensional subspace of X}
= #f?} i‘!ﬁ ylgyf,, Ilx = ¥llx - 2
dim Y,=n

The smallness of the n-width of F thus measures to what extent the set F' can be approximated by an n-dimensional
subspace of X. Several reasons can account for a rapid decrease of d,,(F, X): if F is a set of functions defined over
a domain, we can refer to regularity, or even to analyticity, of these functions with respect to the domain variable (as
analyzed in the example in [10]). Another possibility — that will actually be used in our numerical application— is
when F = {u(y,.), u € D}, where D is a compact set of R” and u(y, .) is the solution of a PDE parametrized by pu.
The approximation of any element u(u, .) € F by finite expansions is a classical problem addressed by, among others,
reduced basis methods and the regularity of u in u can also be a reason for having a small n-width as the results of
[11] and [12] show.

Finally, let us also assume that we have at our disposal a dictionary of linear functionals ¥ ¢ £(X) with the
following properties:

Pl: Vo e Z, |lollgwx) = 1.
P2: Unisolvence property: If ¢ € span{F} is such that o(¢) = 0, Yo € Z, then ¢ = 0.

Given this setting, GEIM aims at building M-dimensional interpolating spaces X, spanned by suitably chosen func-
tions {¢1, ¢z, ...,ou} of F together with sets of M selected linear functionals {07, 03,..., 0y} coming from Z such
that any ¢ € F is well approximated by its generalized interpolant Jy/[¢] € X)s defined by the following interpolation
property:

Voe X, Julel € Xy such that c((Tulel) = oilp), Vi=1,..., M. 3)

Remark 1.2. Since only some elements of the dictionary T are going to be selected, note that X consists of ”candidate”
functionals and only the selected elements will actually be implemented.

The definition of GEIM in the sense of (3) raises several questions:
e is there an optimal selection for the linear functionals o; within the dictionary X ?
e is there a constructive optimal selection for the functions ¢; € F?

e given a set of linearly independent functions {¢; }ie[1,17 and a set of continuous linear functionals {o7;}ie[1,417, does
the interpolant exist in the sense of (3)?

e is the interpolant unique?
¢ under what hypothesis can we expect the GEIM approximation to converge rapidly to ¢?

In what follows, we provide answers to these questions either with rigorous proofs or with numerical evidences.

The construction of the generalized interpolation spaces X, and the selection of the suitable associated linear
functionals is recursively performed by following a greedy procedure very similar to the one of the classical EIM. The
first selected function is, e.g.,

o1 = arg supllellx,
@eF



that defines X = span{¢;}. The first interpolating linear functional is
o = argsup |o(¢))l.
o€eL
The interpolation operator J; : X — X; is defined such that (3) is true for M = 1, i.e. o (J1[¢]) = o1(¢), for any
¢ € X. To facilitate the practical computation of the generalized interpolant, we express it in terms of

P1

1: 9’
1= o)

which will be the basis function that will be employed for X;. In this basis, the interpolant reads

Jilel = o1(@)q1, VYeeX.

We then proceed by induction. For My,,,x < M an upper bound fixed a priori, assume that, for a given 1 < M < My,
we have selected a set of functions {¢1, ¢», ..., ¢y} and the associated basis functions {q;, g2, . .., gpm} that span Xy,
as well as the interpolating linear functionals {o|,0,...,0}. The generalized interpolant is assumed to be well
defined by (3), i.e.,

M
Tulel = Y alpa; ¢eX,

=1
where the coefficients ai” (¢), j=1,..., M are given by the interpolation problem
Find {aﬁ” (<p)}j”i , such that:

M
‘21 0/?”(90)3% =0oi(p), Vi=1,...,M.
Jj=

where Bf‘f are the coefficients of the M x M matrix BY := (a'i(q j)) .. We now define
\J S, j<M

VoeF, eu(p) =lle-ITulellx

At the M + 1-th stage of the greedy algorithm, we choose ¢j1 such that

©m+1 = argsup ey(p) (€]
geF
and
O p+1 = argsup lo(@p+1 — Iuloma . (5)
€L

The next basis function is then
om+1 — Tulem+1]

ome(@msr = Iulemnl)

We finally set X1 = span{e;, 1 < j < M + 1} = span{g;, 1 < j < M + 1}. The interpolation operator Jps1 : X
X1 18 given by

qm+1 =

M+1

Tualel = Yl @)g;, VYpeX,
=1
so as to satisfy (3). The coefficients aﬁ’”l(cp), j=1,..., M + 1, are therefore given by the interpolation problem

Find {aj”+l (gp)}jﬁﬁl such that:

M+1
2 @B = i), Vi1 M
=
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where BY*! = (O—i(qj))lsi,jsMH :

By following exactly the same guidelines as in [1] where the particular case X = L*(Q) was addressed, it can
be proven that, in the general case where X is a Banach space, the generalized interpolation is well-posed: for any
1 < M < M, the set of functions {g;, j € [1, M]} is linearly independent and therefore the space Xy is of dimension
M. Furthermore, the matrix BM is lower triangular with unity diagonal (hence invertible) with off-diagonal entries in
[-1,1].

Note that GEIM reduces to EIM if X ¢ C%(Q) and X is composed of Dirac masses. Also, if the cardinality #F of F
is finite, then the Greedy algorithm is exact in the sense that F' C Xyp. This type of property does not hold in traditional
Lagrangian interpolation due to the fact that the interpolating polynomial spaces are used to interpolate continuous
functions that are not necessarily of polynomial nature. Finally, note also that the approach can be shortcut if the basis
functions are available, in which case the interpolating linear functionals/points are the only output of GEIM/EIM.

It is also important to point out that the current extension of EIM presents two major advantages: first, it allows the
interpolation of functions of weaker regularity than C°(Q). The second interest is related to the potential applications
of GEIM: the use of linear functionals can model in a more faithful manner real sensors involved in physical exper-
iments (indeed, these are in practice no point evaluations as it is usually supposed but rather local averages of some
quantity of interest). The potentialities of these two aspects will be illustrated in the numerical application presented
in Section 5.

We now state a first result about the interpolation error of GEIM.

Theorem 1.3 (Interpolation error on a Banach space). Yo € X, the interpolation error satisfies

lle = Tulelllx < (1 +AM)wi42)f(MII<P—lI/M||x, (6)
where
Ay =T mll e = SHPM (7
eex  llollx
is the Lebesgue constant in the X norm.
Proof. The desired result easily follows since for any ¢ € X and any ¥, € X)y we have
e —Tumlellx = llle—vul - Tule - vumllx
< e = Jullzeolle = umllx
< A+ I mllzee)lle = Ymllxs
which yields the desired inequality. O

The last term in the right hand side of equation (6) is known as the best fit of ¢ by elements in the space Xj,.
However, X,; does not in general coincide with the optimal M-dimensional space in the sense that X,; # X°F', with

Xzft = arginf E(F,Yy).
YucX
dim(Yy)=M

This raises the question of the quality of the finite dimensional subspaces X, provided by the Greedy selection
procedure. It has been proven first in [13] in the case of X = L*(Q) and then in [14] in a general Banach space that
the interpolating spaces X, coming from the Greedy selection procedure of GEIM are quite optimal and that the lack
of optimality comes from the Lebesgue constant. The main results are the following (see [14]):

Theorem 1.4 (See Corollary 3.13 of [14]).

i) Ifdu(F,X) < CoM™, M = 1,2,... and that (1 + Ay) < C;M¥, forany M = 1,2, ..., then, for all B > 1/2, the
interpolation error satisfies for any ¢ € F the inequality ||l¢ — Tulelllx < CgClM_‘”zﬁﬁ, where

222 +ﬂ “ &
Ciri=max{Co2 ¢ | =— max(l;C(( ); Do M
p-1 < M=1,..2[2(+B)]+1
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ii) If (Ay) is a monotonically increasing sequence and if dy(F,X) < Coe ™" for any M > 1 and with Cy > 1,
then, for any ¢ € F, the interpolation error can be bounded as

o — Tulelllc < 4Co(1 + Ay), ifM=1.
P IMEINENNVIC(1 + Ay VMe o M ip i > 2,

As a consequence of this result, the interpolation error of GEIM will converge if the Lebesgue constant ’does not
increase too fast” in the sense that it allows that the previous upper bounds tend to zero as the dimension M increases.
By following the same lines as in [1], it can be proven that when X is a Banach space, the Lebesgue constant has the
exponential upper-bound

< oM-1 .

A <2V max llgilx. ®)
which implies that the decay of dy(F, X) should be exponential in order to converge. However, the behavior of (A )
observed in numerical applications (see Section 5) is rather linear and leads us to expect that the upper bound of (8) is
far from being optimal in a class of set F* of small Kolmogorov n-width.

2. Further results in the case of a Hilbert space

In this section X is a Hilbert space of functions where the norm ||.||y is induced by the inner product (-, -)x. We will
see that in this case the generalized interpolant can be seen as an oblique projection. It will also be proven that we can
derive a sharp interpolation error bound in this case. An explicit (and easily computable) formula for the Lebesgue
constant will also be obtained and this formula will be used to show that the Greedy algorithm aims at minimizing the
Lebesgue constant.

2.1. Interpretation of GEIM as an oblique projection

Forl < j< M,ifo;isthe j™-linear functional selected by the greedy algorithm, let w ; be its Riesz representation
in X, i.e. w; is such that

vf€X7 O—](f) = (W]’f)/\’ (9)
It follows from the well posedness of the generalized interpolation that {o,...,0 )} are linearly independent and
therefore {w, ..., wy} are also linearly independent. We will denote by W), the M-dimensional space
Wy = spanfwy, ..., wyl.

For any f € X, let Iy, [ f] be the orthogonal projection of f on Wy, i.e.

meeml 10)

(f_HWM[f]’W)X = 09 VWG WM

With these notations, we can provide the following interpretation of the generalized interpolant of a function (see
Figure 1 for a schematic representation):

Lemma 2.1. Vf € X, Jylf] is an oblique projection onto the space Xy orthogonal to the space Wy, i.e.

{jM[f] € Xy an

Iulf1=fwx =0, Yw e Wy.

Proof. For any f € X, the interpolation property reads o ;(f) = o;(Julf]), for 1 < j < M. Itis then clear that
wj, NHx = wj, Iulf1)x and the result easily follows from the fact that {wy, ..., wy} are a basis of Wy,. O

A direct consequence of Lemma 2.1 is the following result:



/ HW.\/ [f }

Figure 1: Interpretation of J [ f] as an oblique projection.

Corollary 2.2. In the particular case where
3 ={0e LX), st VfespanlF}*, o(f) =0},

then Wy, = Xy and the resulting generalized interpolant is the orthogonal projection of [ onto the space Xy, i.e.

Iulf1 =1y, [f]

Proof. First of all, note that, in this setting, there is a bijective mapping between X and span{F’} (because the Riesz
representation of any o € X is an element of span{F} and vice-versa). Now, from the arg max definition of o in the
greedy algorithm, the Riesz representation of o is the function wy = ¢ — Ji—1[@i] for k > 2 and wy = ¢ if k = 1.
The interpolation property ox(f — Iu[f]) = 0 implies in this case that (wy, f — Jx—1[f])x for any k € {1,..., M}.
But since the family {wy,...,wy} is a basis of X}, in this particular case, it follows that (f — T ([f1, w)x = O for all
w e XM. ]

Remark 2.3. The case Z = {o € L(X), s.t. Vf € span{F}*, o(f) = 0} is a theoretical situation that does not usually
hold in practical applications. Corollary 2.2 is however a first step towards the theoretical understanding of the
impact of the dictionary X on the interpolation procedure.

From Lemma 2.1, note that [ f] can also be seen as a particular Petrov-Galerkin approximation of the function
f in the case where the approximation space is X, and the trial space is W),. Indeed, the search for the generalized
interpolant can be stated as

{Given feX, find Tylf] € Xy such that 1)
Iulfl.wx = (fiw)x, Ywe Wy.
This formulation leads to the classical error estimation:
17 = It < (14 5 it 7 = vl (13)
where (), is the inf-sup constant
Bu = inf sup o (14)

<X wew, Ixllxlwllx

It will be proven in the next section that the parameter 1/, is, in fact, equal to the Lebesgue constant Ay,. We will
also see that the error bound provided in relation (13) is slightly suboptimal due to the presence of the coefficient 1
before the parameter 1/8).

2.2. Interpolation error

The interpretation of the generalized interpolant as an oblique projection is useful to derive the following result
about the interpolation error:



Theorem 2.4 (Interpolation error on a Hilbert space). Yo € X, the interpolation error satisfies the sharp upper bound:

llp — Tmlelllx < Ay inf llo —ullx (15)
YmEXM
1
where Ay = |Tmllexy = supM is the Lebesgue constant in the X norm. Furthermore, Ay = —, where
eex  llollx Bu
By := inf sup _(wwx ) (16)
XXy wewy, [IXllxlIwllx
1 1
Proof. Letvy := inf sup M It immediately follows that

wheWy yrexe (W llxlyllx

L 1
w—,
Ywt € Wiy, vulwtllx < sup %
wieX;;l ||W ”X

Furthermore, for any ¢ € X, it follows from Lemma 2.1 that ¢ — Ty [¢] € wa. Then:

vallp - Tulllix < sup E=TulelV a7
P T

Besides, for any ¢ € X, and any y* € X;;:

(o = Imlely)x = (¢ — ¥,y )x - (18)
The Cauchy-Schwarz inequality applied to (17) combined with relation (18) yields:

vulle = Tulelllx < inf [lo — yllx. (19)
veXu

Next, it can be proven (see the proposition of Appendix A.1) that vy; = By, which yields the inequality

1
lle = Tmlelllx < @lﬁienfollso — Yllx- (20)

The end of the proof consists in showing that

L _a, = suplulelix on

Bu gex  llellx

This is done by noting first of all that formula (16) implies that

Voe X, BullTulgllx < sup TLEh WX

< llellx
wewy  lIwllx

where we have used the fact that (Ju[¢], w)x = (¢, w)x for all w € Wy, and the Cauchy-Schwarz inequality. There-
fore,
1

Yo e X, [ITulelllx <
Bu

llellxs

which yields
Ay < —. (22)



Let us now denote by ¢ an element of X, with norm |[|||x = 1 such that

WM
sup W, wax _
waeWy  Wallx

Using the notation introduced in (10), we denote by Ily,, [¢/] the orthogonal projection of ¢ on Wy,. Similarly, ITy. [¢]
is the orthogonal projection of ¢ on WALJ so that (HWM [v], HWAJ/.[ [l//])x =0and

Y = Ty, [y] + My [Y1.

Note that
Iu [Mw,, 1] =y (23)

Indeed, since y € X}, we have that
¥ =T (W] = Tua [T, 1] + Tur [Tz [91] = For [T, [91]
because Ty [HWAj [glr]] = 0 in vertue of the interpolation property given in relation (11). In addition to this,

W, wu)x
sup —
wyeWy lwarllx

is achieved for wy, = Iy, [¥] and thus

Bum = IUw,, [¥]llx. (24)
From relations (23) and (24), we infer that Iy, [¢] is such that
T a [T, 1] llx 1 1T m L] llx
Mo wlle  Bu ek el *)

1
Relations (22) and (25) yield the final equality ﬂ_ =Apy.
M
O

Remark 2.5. The link between the Lebesgue constant Ay and the inf-sup quantity By introduced in Theorem 2.4
shows that Ay depends on the dictionary of linear functionals X and also on the interpolating space Xy Although
no theoretical analysis of the impact of these elements has been possible so far, we present in Section 4 a numerical
study about the influence of the dictionary X in Ay;.

Remark 2.6. Note that, since Theorem 2.4 holds only in Hilbert spaces, formula (16) does not apply to the Lebesgue
constant of the classical EIM given that it is defined in the L () norm. The Hilbertian framework allows nevertheless
to consider Dirac masses as linear functionals like in EIM if we place ourselves, e.g., in H*(Q).

2.3. The Greedy algorithm aims at optimizing the Lebesgue constant

If we look in detail at the steps followed by the Greedy algorithm, once X),_; and W),_; have been derived, the
construction of X); and Wy, starts by adding an element ¢ to Xy—;. In the Greedy process, this is done following
formula (4), but let us analyze what happens when we add any ¢ € F. The first consequence of its addition is that
the resulting inf-sup constant becomes zero:

inf sup M =0. (26)

espan{Xu1.6m} wewy,_, l@llxlIwllx

Indeed, the addition of ¢, to the interpolating basis functions has the consequence of adding the element @), =
oM — Im-1leum] that, by definition, satisfies (@p, w)x = 0, Yw € Wy,_;. We thus need to add an element to Wy,_; in
order to stabilize the inf-sup condition.



Let us denote by W the set of Riesz representations in X of the elements of our dictionary . Since

) (o, w)x
m _—
espan(Xy1.0m} wew,,, lllxlwllx

is reached by @y, the aim is to add an element wj; of W that maximizes

maXM. 27
weW  [lwllx
Since the elements of the dictionary are of norm 1 (see property P1 above), this corresponds exactly to one of the steps
performed by the Greedy algorithm (see equation (5)). Furthermore, from the unisolvence property of our dictionary,
the application

[« : X = R

¢ P max (g, w)x
weW

defines a norm in X. Then, formula (27) reads:

(SZM P W)X

T = llom — Tm-1lemllls.

It is thus clear that the choice of ¢, that maximizes the value of 8, is the one that maximizes ¢y — T p-1[¢n] in the
|I.|l« norm. However, since in practice we do not have access to the entire knowledge of this norm, ||.||. is replaced by
the ambient norm ||.|| x:
ou = argmax|le — Fy-1lellls ~ arg maxlle — Tp-1lelllx, (28)
peF peF
which is exactly what the Greedy algorithm does (see (4)). Hence, as a conclusion, with the practical tools that can be
implemented, the choice of ¢, aims at minimizing the Lebesgue constant with the approximation explained in (28).

3. Practical implementation of the Greedy algorithm and the Lebesgue constant

In the present section, we discuss some practical issues regarding the implementation of the Greedy algorithm and
the Lebesgue constant A .

Since the cardinality of F is usually infinite, the practical implementation of the Greedy algorithm is carried out in
a large enough sample subset Sr of finite cardinality #Sr much larger than the dimension of the discrete spaces Xy
and W)y, we plan to use. For example, if F = {u(u,.), u € D}, we choose Sp = {u(u, .),u € E, C D} and E, consists
of #Sr parameter sample points . We assume that this sample subset is representative enough of the entire set F in
the sense that

supq inf  |lx—yllx
xeF \yespan{Sr}

is much smaller than the accuracy we envision through the interpolation process. This assumption is valid for small
dimension of F, or, more precisely, for small dimension of the parameter set 9. In case it cannot be implemented
directly, we can follow two strategies that have been introduced on greedy approaches for reduced basis approxima-
tions either based on (parameter) domain decomposition like in [15] or [16] based on an adaptive construction of the
sample subset, starting from a very coarse definition as in [17]. These approaches have not been implemented here
but we do not foresee any difficulty in adopting them to the GEIM framework.

The following lemma shows that the generalized interpolant can be recursively computed.

Lemma 3.1. For any function f € X, we have the following recursion for M > 1

{J‘M [f] = Tw1 Lf] + on(f = Twe1 L Dam 29)

Jolf1=0
and the generalized interpolant of f can be recursively computed.
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Proof. Using the fact that the spaces X, are hierarchically defined, both sides of (29) belong to Xj;. Using the fact
that o;(gy) = 0 for i < M and the definition of 3, and S, we infer that

i (IulfD =i Tu-1lfl+ou(f = ITu-1lfDau), Yi<M.

Finally, it is clear that the right and left hand sides have the same image trough ;. The equality holds by uniqueness

of the generalized interpolation procedure.
O

Remark 3.2. This result also holds for the classical EIM case.

The greedy algorithm is in practice a very time-consuming task whose computing time could significantly be
reduced by the use of parallel architectures and the use of formula (29) as is outlined in Algorithm 1.

Algorithm 1 Practical implementation of the Greedy procedure

1: Input: =, Sr = {fi € FII*, €10, Mupax. M =0

2: Assign a set of functions {fi, . - - - » Jip0p | 10 €ach processor p.

3: repeat

4: M—M+1

5 Epmax =0 > parallel

6 for k = {kp siarts - - s kpsiop} dO

7: f=r

8: Compute and store oy (f — Tu(f))-

9: Assemble J41(f) following formula (29)
10: Compute eye1 = |If = Tua1(Dllx
11: if €41 > &) max then
12: kp,max =k and Epmax = EM+1
13: end if
14: end for > end parallel

Nproc
15: Gather {(apﬁmax,kp,max)}pil and find (&max, kmax) = argmax (&, max, Kp.max)-
- PE{L.....Nproc}

16: 1 = Smae = T Frnar)

17: Epmax =0 > parallel
18: fOI’ J = {,jp,start’ ] jp,,\'tup} dO

19: o =0
20: Compute &1 = |0 (Far41)]
21: if ‘§M+1 > ép,max then
22: jp,mi\x = ] and ép,max = 5M+1
23: end if
24: end for > end parallel

N . Nproc N . N .
250 Gather {(&pmaxs Jpamas)] ) a0 find B inan) = ATEMAX (B s Jpanan)-
= Pell.Nproc}
r
26: Compute and store gy = L
O-jmux(rMH)

27: Store o 41 = 0y -
28: Compute and store w),; (Riesz representation of o p41).
29: until gy, < &0y Or M > M
30: Output: {o,..., 041}, Wyer = span{wi, ..., wai}, Xa1 = spaniqi, ..., gy}

Once Xy, and Wy, have been constructed thanks to Algorithm 1, the Lebesgue constant can be computed by the
resolution of an eigenvalue problem as is explained in

Lemma 3.3. If{Gi,...,qu} and (W, ..., Wy} are an orthonormal basis of Xy and Wy respectively, then

Bu = 1/Ay = \Anin(ATA), (30)

where A is the M X M matrix whose entries are A; ; = (W;, G ;)x and Amin(AT A) denotes the minimum eigenvalue of the
positive definite matrix AT A.
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Proof. Since

(o, w)x . (Ax,w)y . llAxL
By = inf sup————— = inf sup———— = in ,
X wew, [IXllxlwllx xR epu llxllliwlla - xer¥ lxll>

||2

the result easily follows because is the Rayleigh quotient of AT A whose infimum is achieved by Apin(ATA). O

3
Remark 3.4. Note that By corresponds to the minimum singular value of the matrix A, which is a matrix of small
size M X M. Its computation can be easily performed by, e.g., the inverse power method.

4. A numerical study about the impact of the dictionary X of linear functionals in the Lebesgue constant

As outlined in Remark 2.5, the explicit expression of the Lebesgue constant presented in formula (16) shows that
Ay is intimately linked to the dictionary of linear functionals X that is used in the Greedy algorithm to build the
interpolation process. With the exception of the trivial case considered in Corollary 2.2, no theoretical analysis of
the impact of X on the behavior of the Lebesgue constant has been possible so far. For this reason, we present here
some numerical results on this issue as a first illustration of this connection. The same computations will also let us
numerically validate the formula (16) for A,;, whose original definition is given by (7).

We place ourselves in Q = [0, 1] and consider the numerical approximation in LX(Q) or H'(Q) of the following
compact set:

F={f(,p1,p2) | (1, p2) € [0.01,24.9] x [0, 15]}, 3D

where {
f(X,,UI,ﬂZ) = 5 Vx € Q.
V1 + (25 + py cos(uzx))x?

We recall that L2(Q) = { S Il < oo}, where the norm || - ||;2(q) is induced by the inner product (W, v);2q) =
fw(x)v(x)dx. Also, H'(Q) = {f| [l £l () < oo}, where the norm |||l () is induced by the inner product (w, v) 1) =

f w(x)v(x)dx + f Vw(x).Vv(x)dx.

Any f € F w111 be approximated by its generalized interpolant at dimension M. For this purpose, the practical
construction of the interpolating space Xy, and the selection of the linear functionals is done through the Greedy
algorithm described in Section 3. The following dictionary of linear functionals has been employed:

Z={or € LX), kell,..., Nensor}}, (32)
where Nyensor = 150, and
o) = [ entoetnds, e eX (33)
xeQ
The function ¢ ; reads:
Crs(x) = L(x) YxeqQ,
||mk,s(')||L1(Q)

where
2 2
my s(x) := eI vy e

and x; € Q. We will explore the variation of the coefficient s € R, in order to understand the influence of the
dictionary X on A y.
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4.1. Validation of the inf-sup formula

We will first start by fixing s to a value of 0.005 and by numerically validating formula (16) of the Lebesgue
constant by comparing it to the value given by the original formula (7).

Regarding the computation of (16), the quantity ), has been derived using formula (30) of Lemma 3.3. It suffices
to evaluate the scalar products of the matrix A defined in that lemma and obtain the minimum eigenvalue of AT A.
For the practical computations, a IP; finite element approximation of the functions §; and W; has been used in order
to simplify the scalar product evaluation in the L? and H' spaces. For the same reason and as a matter of global
coherence, the Lebesgue constant

KT mlelllx

eex  llollx

is also approximated in the same IP; finite element approximation of the elements of X. This approach leads to the
computation of a discrete Raleigh quotient, whose derivation is explained in detail in appendix B.

The results of the computation are given in Figure 2 and show an excellent agreement between both values in L?
and H'. The same agreement holds for any value of the parameter s of the linear functionals, but, as will be presented
in the next section, the behavior of Ay, varies depending on this parameter.

10° ‘ ‘ ‘ ‘ 10° ‘ ‘ ‘ ‘
« AM = :UBM . /\M = ]_/BM w@ !
o A, with sup formula o A, with sup formula ¢
10° et 10°
s s
< < e
D
1 1
0 - 10 o . o
© Bppepese® W%e% ® oss, memm
10° ‘ ‘ ‘ ‘ 10° ‘ ‘ ‘ ‘
0 10 20 30 40 50 0 10 20 30 40 50
Dimension M Dimension M

(a) X = L*([0; 1])

(b) X = H'([0; 1])

Figure 2: Numerical validation of the inf-sup formula: comparison between formulae (7) and (16).

In the particular case presented here, the behavior of the Lebesgue constant does not significantly change if we
place ourselves in L? or in H' and Ay remains constant (the degradation in the behavior for M > 44 is due to
numerical round-off errors).

4.2. Impact of the dictionary of linear functionals

We now study the impact of s on the evolution of the Lebesgue constant through our example in one dimension.
For this purpose, we present in Figures 3a and 3b the behavior in L? and in H' of Ay, for different values of s.

To begin with, we will focus on the behavior for sufficiently large values of s and analyze the range s > 5.1073.
It can be observed that, as s increases, the Lebesgue constant progressively degrades in both norms. The sequence
(A ) starts to diverge at dimensions that are lower and lower as s increases (compare, e.g., the behaviors between the
case s = 2.1072 and s = 4.1072). An intuitive manner to interpret this observation is as follows: the dictionary under
consideration in this example (see formula (32)) consists on local averages operations whose “range” is controlled by
s. As s increases, the range increases and a limit will be reached in which the addition of more linear functionals will
result in a redundant addition of information because of an overlap of the domains where the local averages are acting.
As aresult, the larger s, the sooner this redundancy will appear and the more unstable the process.
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Figure 3: Impact on Ay of the parameter s of the linear functionals.

It is also important to understand the behavior when the parameter s tends to zero. In this case, the linear func-

tionals tend to Dirac masses, that, in 1D, are elements of H~! but not of L2. Hence, in the limit s = 0, the definition of
the space Wy, will be possible in H' but not in L? because the problem:

{Find w; € X such that:

34)
gi(p) = Wi, @)x =6,(p), YoelX

is well-defined in H' but not in L2. This observation helps to understand first of all why A remains roughly constant
in H' as s decreases whereas it behaves as s~'/? in the L? norm (see Figure 4). Indeed, in the H' case, we have the
inequality

T 1[Nl _

llg1lla @
o1 ()| 2

llg1lle @
llll ()

< el
llell @)

. VoeH'(Q),
llll g ()
which is bounded for any s € R,. However, in the case of L*(Q), it can be inferred that

T 1Ll

llg1llz2)
T = lo1(e)]
90||L2(Q)

”ml,s”Lz(Q) 1
< llgillz2), Yo € H(Q)
||§0||L2(Q) ”ml,s”Ll(Q)

where we have applied the Cauchy-Schwarz inequality to |o7;(¢)|. A simple change of variable u =

— ! in the
Il '
mi sllz2
evaluation of L) leads to the bound
1 5l @)
1T [elllz2 _
————— < Cllgillzeys % Ve € LX(Q), (35)
||S0||L2(Q)
where ,
fe‘” du
_Q
fe*“z/zdu'

Q

In Figure 4, note that for values s < 107, the behavior of A; no longer follows s~/ but this is due to computer
limitations. Indeed, the computations have been carried out with a maximum number of 10* degrees of freedom in

14



the IP; approximation because of memory storage issues. As a result, for s < 107*, we no longer capture enough
information with this finite element precision.

10°

--Trend in §%/2

—e—/\1 (Hlnorm)

—»—/\1 (L2 norm)

<\—|
10
0
10 — —
10° 10 107 10’
Values of s

Figure 4: Behavior of A; as a function of s (H' and L? norms). Remark: the scale of the figure is log-log.

As a consequence of the diverging behavior of A; in L? as the parameter s decreases, it is reasonable to expect
that the sequence (Ay) quickly diverges as s — 0 in L? but that it remains bounded in H'. This behavior is indeed
illustrated in Figures 3a and 3b through the example of s = 107, in which it is possible to observe the phenomenon.

5. Application of GEIM to the real-time monitoring of a physical experiment

The main purpose of this section is to illustrate that GEIM can be used as a tool for the real-time monitoring
of a physical or industrial process. The rationale is to provide an online accurate approximation of the phenomenon
under consideration thanks to the computation of a generalized interpolating function that will be derived on the fly by
combining in an appropriate manner measurements from the experiment with mathematical models (a parameter de-
pendent PDE). Such a tool could be employed for keeping track of the process in the whole domain of the experiment
and not only at locations where the sensors are placed.

We will also show that the proposed method can be helpful in design of experiments: the method minimizes the
number of